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We study experimentally and theoretically the evolution of two-dimensional 
patterns in the Rayleigh-Taylor instability of a thin layer of viscous fluid spread on 
a solid surface. Various kinds of patterns of different symmetries are observed, with 
possible transition between patterns, the preferred symmetries being the axial and 
hexagonal ones. Starting from the lubrication hypothesis, we derive the nonlinear 
evolution equation of the interface, and the amplitude equation of its Fourier 
components. The evolution laws of the different patterns are calculated a t  order two 
or three, the preferred symmetries being related to the non-invariance of the system 
by amplitude reflection. We also discuss qualitatively the dripping at final stage of 
the instability. 

1. Introduction 
In this paper, we report experimental observations of the two-dimensional 

patterns arising in the gravitational instability of a thin layer of viscous fluid and we 
derive nonlinear evolution equations for the patterns having different symmetries. 
The Rayleigh-Taylor instability is a gravitational instability occurring when there 
is an adverse density stratification in a fluid, i.e. when the resultant acceleration is 
directed from the heavier towards the lighter fluid (Taylor 1950). If the instability 
occurs a t  an interface between two immiscible fluids, i t  can be understood as a 
gravitational amplification of capillary waves, the surface tension acting as a 
stabilizing effect. 

In the case of two semi-infinite layers of inviscid fluids, the linear stability analysis 
(Chandrasekhar 1981) leads to the following dispersion relation for normal modes of 
deformation of the interface g(x, t )  = exp [ i ( p  + w t ) ]  : 

where g is the net acceleration, p2(pl)  is the density of the upper (lower) fluid and y 
is the surface tension. The interface is unstable when w2 is negative (w = ia), for 
wavenumbers p smaller than the capillary wavenumber qe = (Ip, -p l lg /y ) i ,  the 
deformation increasing with a time constant r = l/u. 

The dynamics of the gravitational instability is completely different if the fluids 
are contained in a porous medium or in a Hele-Shaw cell, cases in which the viscous 
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FIGURE 1.  Dispersion relationship in the Rayleigh-Taylor instability of a thin layer of viscous 
fluid. The instability occurs when the density pz of the upper fluid is larger than that of the lower 
fluid pl .  

effects are dominant. The velocity field is then given by Darcy’s law and the 
dispersion relation is 

where r1(r2) is the viscosity of the upper (lower) fluid and k is the permeability of the 
medium (for a Hele-Shaw cell of thickness b the permeability is k = &b2). When the 
interface is displaced with a normal average velocity W ,  the term [ r , ~ , / k - - ~ / k ]  Wq 
should be added to the destabilizing gravity term ( p l - p z ) g q .  If the displaced fluid 
is the more viscous one, the viscous fingering (Saffman & Taylor 1958) instability is 
superimposed on the gravitation instability. 

The dynamics of the Rayleigh-Taylor instability is also governed by viscous 
effects if one of the fluid layers is very thin, i.e. if the thickness e ,  of the layer is much 
smaller than the viscous diffusion length 1 = ( q ~ / p ) t .  In this case, the hydrodynamic 
problem is identical to that encountered in fluctuations of soap films (Vrij 1966). 
When the wavelength of the instability is large compared to the thickness e,, the use 
of the lubrication theory yields the dispersion relation (Vrij 1966; Babchin et al. 
1983) 

c7 = - (4/37)  “P1-P2)gq2+Yq41. (1.3) 

The relation (1.3) is plotted on figure 1 .  Again, the perturbations of the interface 
having a wavenumber smaller than the capillary wavenumber qc are amplified when 
p1 < pz. The fastest growing mode has a wavenumber qm = q,/2/2, the time constant 
being inversely proportional to the cube of the thickness of the layer. 

The dissipative Rayleigh-Taylor instability of thin films has been less explored 
than the instability of thick layers, where the viscous effects are often neglected, and 
which has motivated most recent studies (Tan 1986; Jacobs & Catton 1988a, b ;  Iooss 
& Rossi 1989). Yet, the problem of gravitational instability a t  very low Reynolds 
number is important in geophysical processes (rising of salt domes, for example), and 
model laboratory experiments have been performed to investigate this phenomenon 
(Nettleton 1934; Whitehead & Luther 1975; Whitehead 1988). Recently Yiantsios & 
Higgins (1989) have performed a careful theoretical and numerical study of the 
problem of the thin layer. However, their study was  restricted to the case of one- 
dimensional perturbations, and the selection of two-dimensional patterns has 
received little attention up to now. Whitehead & Luther (1975) have discussed the 
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development of an hexagonal pattern, but the horizontal extent of their laboratory 
experiment was too small to investigate the problem of symmetry selection. In 
addition to the geophysical problems, the instability of thin layers is important in the 
genesis of two-phase flow in situations of film boiling (Berenson 1962; Sainson 1989; 
Sainson et al. 1990). 

In Q 2 we present our experimental investigations of the thin-layer instability. 
Different patterns (‘rolls ’, hexagonal, axisymmetric, annular of sixfold symmetry . . .) 
are observed with possible transitions between patterns of different symmetry. We 
then try to select these patterns by varying the nature of the initial perturbation. At 
large times, we observe that the axial and hexagonal symmetries are preferred. We 
also briefly discuss the latest stage of this instability when dripping has occurred. 

In $3 we propose a nonlinear analysis of this problem based on the lubrication 
theory. We derive the nonlinear evolution equation of the interface, and we 
investigate the growth initiated by small perturbations of this interface. This 
approach is very similar to that developed by Jacobs & Catton (1988a, b )  in the 
inviscid case, except that  we discuss the nonlinear growth in terms of interactions 
between Fourier modes (see for instance Busse 1978). The essential property of the 
system studied is its non-invariance by amplitude reflection, that  introduces second 
order non-linearities in the evolution equations. We present different solutions of the 
amplitude equations calculated at order two or three, for different initial conditions. 
In  all cases, the second-order nonlinearities favour the growth of the hexagonal and 
axisymmetric patterns, in agreement with our experimental observations. 

Whitehead & Luther (1975) have discussed the influence of second-order 
nonlinearities in the growth of an hexagonal perturbation of the interface, but in the 
limit of a vanishing surface tension. Our approach takes into account the capillary 
effects and allows us to treat higher-order nonlinearities. I n  addition, we propose a 
simplified analysis of the annular patterns that avoid treating nonlinear interactions 
between Bessel functions ($3.5). 

2. Experimental 
2.1. Experimental set-up 

An experimental investigation of the Rayleigh-Taylor instability requires the 
preparation of a flat fluid interface in an unstable density stratification. This is done 
in two steps in our experiment. First, a drop of silicon oil is spread by gravity on a 
glass plate, yielding a viscous pancake, approximately 30cm in diameter, and a 
fraction of millimeter thick. The spreading is very slow and it takes about two days 
to get a completely spread drop. The spreading has to  be stopped because the edge 
of the pancake becomes irregular owing to surface heterogeneities of the glass plate. 
Secondly, the glass plate is turned over within a few seconds, a time much smaller 
than the characteristic time of the gravitational instability (figure 2). Given the 
physical characteristics of the silicon oil (density p = 0.97 g/cm3, viscosity 
7 = 1000 CP and surface tension y = 21 dyne/cm) and the typical thickness of the 
layer e, = 0.2 mm we can derive the capillary length A, = (y/pg)i  = 1.49 mm. The 
corresponding wavelength of the fastest growing mode should then be 

A, = 2n2/2A, = 13.2 mm. (2.1) 
The time constant of the instability is obtained from the dispersion relation (1.3) and 
the associated time constant for A, is 

T, = 127y/eip2g2 = 350 S. (2.2) 
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FIGUKE 2. Schematic experimental set-up. 

The mean thickness e ,  is derived by dividing the total volume of fluid (varying 
from 15 to  20cm3) by the area of the oil pancake. The local thickness was not 
measured directly but we can infer the thickness variation from the analysis of 
viscous gravity currents done by Huppert (1982). Huppert obtained similarity 
solutions for the axisymmetric spreading of a viscous drop neglecting surface tension 
effects, a reasonable assumption for drops having a radius much larger than the 
capillary length, except in the vicinity of the drop edge. Using Huppert’s solution, 
which compares quite well to experimental data : 

where t is the time elapsed from the beginning of spreading. Taking, for example, a 
volume equal to 20 em3 and a spreading time of two days, we get the thickness of the 
oil layer ranging from 0.227 mm at the centre to 0.166 mm a t  15 cm from the centre. 
Accordingly, the time constant of the instability should increase by approximately 
a factor of two from the centre to the edge of the layer. This explains the faster 
development of the instability in the centre of the layer, in addition to that observed 
at  the very edge, where the interface has a large curvature caused by the contact line. 

The development of the instability is monitored either by a video recording or by 
photographs taken a t  fixed intervals. The deformation of the interface is revealed by 
two different techniques. The first one is very simple and consists in strongly dyeing 
the oil. The intensity of light transmitted through the oil layer decreases 
exponentially with the thickness of the layer. Then thicker parts appear as darker 
spots on the photographs (figure 3). This allows us to do a simple determination of 
the spatial structure of the instability. In the second technique, a ruled screen is 
photographed through the oil layer (figure 2). The refraction of the light rays on the 
oil-air interface shifts the apparent position of the lines of the ruled screen. When the 
slope of the interface remains small, the local apparent displacement of the screen 8 
is proportional to the local slope of the interface a = dLJdx: 

6 =  a ( n , - l ) [ B + e , ( l - l / n , ) ] ,  (2.4) 
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FIGURE 3. Typical structures occurring in the instability. Thicker parts of the fluid layer appear 
as darker spots. The two structures designated A are initially axisymmetric and were initiated by 
small dust on the interface. These structures are likely to develop a six-fold symmetry like the one 
designated A6 and finally evolve into an hexagonal pattern like H. Line structures are also 
observed. The one shown by R was initiated by the thickness gradient close to the edge of the fluid 
layer. 

where no and ng are the refraction indices of the oil and glass, eB is the thickness of 
the glass plate and D is the distance from the ruled screen to the interface (figure 4). 
With D = 56 mm, eg = 5 mm, no = 1,41, ng = 1,52 and a mesh m of the ruled screen 
equal to 0.8 mm, a displacement d = m corresponds to a slope of the interface 
a = 0.03. The smallest displacement which can be detected is of the order of 
magnitude $m, corresponding to  a slope a = 0.006. 

The image of the screen through an axisymmetric perturbation of the interface is 
a ‘vasarelyan’ figure such as the ones shown on figure 5. 

2.2. Experimental results 
As can be seen on figure 3 different patterns can be observed simultaneously in the 
unstable layer : axisymmetric patterns (concentric rings), axisymmetric patterns 
whose rings break into peaks (often with a six-fold symmetry), hexagonal patterns 
and, finally, lines which we sometimes call ‘rolls’. The distance between two rolls is 
(h,),,, = 12.5 mm in rather good agreement with the expected value A ,  = 13.2 mm 
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FIGURE 4. Refraction of the light rays on the fluid interface and apparent shift of a ruled 
screen located at a distance D below the interface. 

deduced from the linear analysis. The distance between two neighbouring peaks in 
hexagonal patterns is (AP)exp = 14.9 mm, the ratio (Ap/AM)exp x 1.19 being very close 
to the expected value 2 / 4 3  x 1.15. In order to examine the competition between 
spatial modes of different symmetries, we analysed the evolution of the layer with 
different initial perturbations. 

2.2.1. Evolution of an axisymmetric perturbation 
Unless extreme care is taken to protect the oil layer during the long spreading 

operation, small specks of dust from the ambient atmosphere fall on the interface and 
create small circular dimples on the free surface (the spatial extent of these 
perturbations is of order of A, (Nicolson 1949; Cloitre 1989)). Very often, the 
instability of the interface grows from these initial perturbations as concentric rings 
(figure 3). Meanwhile, clean parts of the oil layer do not show any appreciable 
deformation during the first half-hour following the overturning of the glass plate. 
This demonstrates that the development of the instability is very sensitive to the 
initial amplitude of the deformation. 

The time evolution of an isolated axisymmetric pattern is shown on figure 5 as a 
series of photographs of the deformed ruled screen. From the initial bump in the 
interface, concentric rings develop outwards and up to four or five rings are 
frequently seen. From the time evolution of the slope of the interface at a given 
point, it is possible t o  give an estimate of the time constant of the instability 
reXp = 200 to 300 s, in qualitative agreement with the linear analysis giving 
rM = 350 S. 

When the curvature of the interface is too large, the image of the screen through 
the oil layer disappears (see centre of figurc 5 e ) .  In  addition to  the sideways 
displacement of the image, the interface acts as a lens and moves the image out of 
the depth of field of the viewing optics. This is a typical effect encountered in the use 
of deflectometry techniques on fluid interfaces (Cloitre 1989). 
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(b) 
FIGURE 5 (a, b ) .  For caption see page 537. 
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FIGURE 5 ( c ,  d ) .  For caption see facing page. 
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0 
FIGURE 5 (a-A. Time evolution of an axisymmetric perturbation revealed by the distortion of 

a ruled screen observed through the interface. The period of the screen is 0.8 rnrn. 
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At later times, the axial symmetry is broken into a six-fold one (figure 6), with six 
peaks on the first ring and twclve peaks on the second ring. Very often, this effect is 
due to the interaction of the axial pattern with another one. We were not able to 
observe isolated axisymmetric patterns for a long enough time to test if the 
symmetry breaking also occurs without interaction with other structures. 

2.2.2. One-dimensional perturbations : lines or 'rolls ' 
Additional initial perturbations were made by stretching a thin metal wire across 

the oil layer after the spreading was completed. The wire has a diameter slightly 
larger than the thickness of the fluid laycr and i t  is not wetted by the oil. I n  the stable 
configuration, before the overturning of the plate, the interface is depressed by the 
wire. The perturbation is easily calculated from the Laplace equation: it decays 
exponentially from the wire as exp ( -lxlAc). Once the glass plate is inverted, one- 
dimensional structures (lines parallel to  the wirc) dcvclop from the wire (figure 7).  
Again, the distance between two neighbouring lines is close to A,. These structures 
do not remain one-dimensional: after a while, the lines are broken into peaks in an 
hexagonal pattern. The first peaks appear on the wire. Let us mention again that the 
distance between two peaks along a line parallel to the wirc is larger than A, by a 
factor 2/.\/3. 

2.2.3. Perturbation by two wires crossed at 60' and at 90" 
The tendency of the system to develop a pattern with a triangular symmetry is 

enhanced if the initial perturbation is created by two wires crossed at 60" (figure 8). 
As in a the experiment with a single wire, a set of lines moves outwards from each 
wire. When the two sets of lines cross they create a perfect hexagonal pattern of 
peaks. 

I n  order to test the stability of a square pattern of peaks (as it is observed, for 
instance, in the surface instability of ferrofluids with a magnetic field normal to the 
interface - see Wesfreid & Allais 1985), the experiment was also performed with 
two wires crossed a t  90" (figure 9 ) .  At a late stage (figure 9 i ) ,  when the instability has 
spread all over the fluid pancake, the quadrangular symmetry is observed only in 
some areas of the fluid. The tendency to  go back to the triangular symmetry can be 
made somewhat quantitative by counting the number of neighbours of each peak, 
using the skeletonization from image treatment. On figure 9 ( i ) ,  8% of peaks have 
four neighbours, 32 YO five neighbours and 60 % six neighbours. 

The overall conclusion of these experiments is that the preferred symmetries in the 
gravitational instabilities of thin films are the axial symmetry and the hexagonal 
symmetry in the initial nonlinear stage. 

2.2.4. Final stage of the experiment: dripping 

At the last stage of the experiment, typically two hours after the start with the 
conditions given in $2.1, enough fluid has been accumulated in the peaks of the 
interface for them to become unstable. The fluid then begins to drip from the solid 
surface, a phenomenon well known to painters and sailors awakened by water 
condensed on cabin roofs. 

Although we did not observe it,  there should exist a threshold to this dripping 
instability. I f  the initial thickness e, is small enough, the volume of fluid accumulated 
from a surface area of order inA& will be too small to exceed the critical volume for 
the stability of a hanging drop. Myshkis et al. (1987) determined the critical volume 
V* of an isolated drop as a function of the contact angle of the fluid interface with 
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FIGURE 6. Axisymmetric structure of figure 5 at a later stage, when the 
axial symmetry has been broken. 

the solid interface. In  our experiment the contact angle is zero (a film of oil always 
remains on the glass) and V* = 19h:. If the fluid is collected from an hexagon of area 
16n2 hE/d3 ,  the critical thickness is given by e* = ( 192/3/16n2)A,, and is associated 
with a critical Bond number B, = (e*/hJ2 z 0.04. I n  our case, its value is 0.31 mm 
which is larger than the initial thickness in our experiment. According to the above 
criterion, and contrary to  our observations, oil should not drip from the glass plate. 
The discrepancy probably arises from the fact that  the drops are not isolated and are 
connected to a large reservoir through a tiny film. Very often, dripping occurs after 
the pairing of two neighbouring peaks which then form a peak large enough to exceed 
the critical volume V*. Such pairings can be seen on figures 9d,  9e and 9f ,  in the 
upper right-hand corner of the fluid layer. Once it has started, the dripping 
phenomenon occurs a t  random positions (and presumably at random times) and 
destroys the spatial regularity of previously well-organized structures such as the one 
observed with two wires at 60' (figure 10). 

In  the one-dimensional case, the existence of a critical Bond number has also been 
found numerically by Yiantsios & Higgins (1989). The same argument of drop 
stability allowed them to calculate a value for B, that was in agreement with their 
numerical observations. Interestingly, their data also exhibit a tendency towards 
drop coalescence a t  the latest stages of the instability for B < B,. 

3. Theoretical discussion 
3.1. Evolution equation - linear growth 

The geometry of the experiment is recalled on figure 11. At time t = 0, a thin layer 
of viscous fluid (mass density p, viscosity 7, thickness e,) is submitted to  a 
destabilizing gravity field g = gz. At time t ,  the fluctuations of the interface are 



360 M .  Fermigier. L. Limat. J .  E.  U'e$freid. P. Boudinet und C. Quilliet 



t

FIGURE 7 (a-e). Time evolution of the instability imitiated by a single wire stretched through 
the fluid layer. 

amplified, and the local thickness becomes a function of the position r in the plane 
(x, y )  : e(r ,  t )  = e ,+ [ ( r ,  t ) ,  [(r,  t )  being the surface displacement. In  this section we 
establish an evolution equation for 6, which holds in the experimental conditions 
presented in 52.2. We also specify its general validity conditions after briefly 
discussing the linear growth regime. 

I n  view of the typical features of our experiment (very long timescales, very 
viscous fluid, etc.), we neglect the inertial effects. The Navier-Stokes equations 
reduce in this case to  the Stokes ones, and the flow is governed by the following set 
of equations : 

yv2u + a 2  U p z 2  = V P ,  (3 . la )  

T v 2  v, + a 2  v,laz2 = a p p z  - pg, (3 . lb )  

v .  u + av,/az = 0, ( 3 . 1 ~ )  

where u = (.us, vg) and v, are respectively the horizontal and vertical components of 
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FIGURE 8(a-c).  For caption see facing page. 
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FIQURE 8(u- j ) .  Time evolution of the  instability initiated by two wires rrossed at 60'. Thr 
time interval between two pictures is 240 s. 
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FIGURE 9(a-c) .  For caption see page 366. 
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FIGURE 9(d-j). For caption see page 366. 
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FIGERE 9(a-i) .  Time evolution of the instability initiated hy two wires crossed at 90'. The time 
interval between two pictures is 360 s. Pairing of two neighbouring peaks is indicated by arrows. 
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FIGURE 10. Late stage of the hexagonal pattern shown on figure 8. Dripping has already occurred 
close to the crossing of the wires and begins to disorganize the regular array of peaks. 

Y - X 

_____+ 

i; 
A 

FIGURE 1 1 .  Schematic representation of the unstable layer. In the limit e, < Ac, the slope of the 
interface is negligible, and the velocity field reduces to that of a half-Poiseuille flow. 

the velocity and P(r ,  z, t )  is the pressure field. By convention, the gradient operators 
V, and the Laplacian V2 are relative to  the x- and y-coordinates throughout. 

Thesc equations must be completed by the appropriate boundary conditions. The 
non-linearities are introduced at this step by the conditions involved at the moving 
interface. A first study of the problem has been made by Whitehead & Luther (1975) 
in the limit of a negligible surface tension. In this case, the dominant wavelength of 
the instability A, was comparable to the depth of the layer. In our case, the situation 
is very different : the layer thickness e always remains very small compared to A,, 
which is in fact determined by the competition between capillarity and gravity. As 
a result, the slope of the interface remains very small, and the treatment of the 
problem can be greatly simplified by using the lubrication theory (Batchelor 1967). 
The evolution obtained will hold in the linear regime { 4 e, 4 A,, and also in a 
nonlinear regime defined as 6 x e, < A,. 
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After neglecting corrections of order (C/h)*, thc boundary conditions rcduce to : 

u = O  at  z = 0 ,  (3.2a) 

7 au/az = 0 at  z = e(r, t ) ,  (3.2b) 

pa-P  = y V . ( V e / { l + ( ~ e ) ~ ) t )  z yV2e a t  z = e ( r . t ) ,  (3%) 

where Pa denotes the atmospheric pressure, and y is the surface tension. Still in the 
lubrication approximation, after neglecting corrections of order ( e / h ) 2 ,  the pressure 
and velocity fields are easily calculated : 

P ( r , z , t )  = f'a-pg(e-zZ)-yV2e, (3.3a) 

(3.3b) 

These approximations lead to a very simple solution of (3.1) : the pressure field is 
hydrostatic, while the horizontal velocity field suggested on figure 11 reduces to a 
half-Yoiseuille flow driven by the horizontal pressure gradient. 

The evolution equation can now be deduced from thc equation of motion of the 
interface : 

1 
u(r,x, t )  = - z (2e -2 )V(pge+yV2e) .  

27 

t ae + [u+,) - V]e = w, (z=e) - - - [udz, 

which is equivalent to the mass conservation equation : 

This finally gives 

(3.4) 

In this nonlinear equation, the growth rate of C(r.t) is determined by the 
competition between a gravity and a capillarity term. The respective influences of 
these two factors are obvious in (3.3) : the gravity tends to concentrate the fluid in 
the regions of positive 5 where the pressure is lowered (amplification effect), while the 
capillarity moderates the resulting growth. 

A more general and more rigorous derivation of this equation, based on a 
perturbation expansion, has been recently given by Yiantsios & Higgins (1989) in the 
case of the two-fluid problem. Equation (3.4) is also mentioned in an article by 
Pismen (1981), as a special case of the equation describing the flow of a film along an 
inclined plate, which can be treated with exactly the same methods (Benney 1966; 
Oron & Rosenau 1989a, b) .  We also mention that a onc-dimensional version of (3.4) 
has been found to govern the instability of a thin annular film in a cylindrical 
capillary (Hammond 1983; Gauglitz & Radkc 1988). 

We now rewrite (3.4) after separating a linear and a nonlinear contribution: 

The linear operator is classical in the lubrication description of thin films (Vrij 
1966 ; Babchin et al. 1983) but, to our knowledge, the properties of the nonlinear part 
have never been discussed. Most available studies are numcrical and restricted to thc 
one-dimensional case (Hammond 1983; Yiantsios & Higgins 1989), or focused on a 
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different nonlinearity involving terms of the kind <az[ or (V[)z (Kuramoto 1984; 
Manneville 1988; Dewel, Borckmans & Walgraef 1984). The term CaZ[ arises when 
a mean drift is superimposed on the film flow by means of a shear stress (Babchin 
et al. 1983) or of a component of gravity (Oron & Rosenau 1989a,b) parallel to the 
film. 

When the perturbation of the interface is small compared to  e,. the nonlinearities 
can be neglected, and the linear operator leads to an exponential growth of Fourier 
modes : 

We thus recover the results announced in Q 1.3, in particular the selection of a 
dominant wavenumber qM, given by qk = pg/2y = 2x/hM and associated with a 
typical growth rate vM = eip2g2/12qy. A particular class of solutions is obtained by 
solving the linear part of (3 .5)  in polar coordinates ( r ,8) ,  giving 

Cg,n ( r , t )  = ~ ,nJ , (qr )cos [neIex~(p , t ) ,  (3.7) 

aQ being again given by (3 .6) ,  and the J ,  being the Bessel functions of the first kind. 
The solution n = 0 corresponds to the axisymmetric structures observed in our 
experiment around the dust. As we will see in $3.5,  the annular system with 
secondary maxima reproduced on figure 6 can be analysed as superpositions of J ,  and 
J ,  patterns, n being multiples of 6 .  

We now make more precise the validity conditions of (3 .4) .  As usual in lubrication 
calculations the approximations made on the velocity field are of order a’, 01 x [ / A c  
being the typical slope of the interface. Except in the case when dripping occurs, 5 
is a t  most of order e ,  and we obtain a first validity condition : 

ei/h2 z ei pg/ y < 1 .  (3 .8)  

We have also checked that the nonlinearities involved at the boundary due to the 
interface slope were of the same order. The relevant nonlinearities retained in (3 .4)  
are thus only those involved through the vertical displacement of the interface, 
which modifies the ‘mobility’ (e,+LJ3 of the fluid in the horizontal pressure gradient. 

Another condition is obtained by considering the inertial terms that we have 
neglected in the Navier-Stokes equations. We have estimated the Reynolds number 
of the flow calculated above, which reduces to Re x e[/Z2, 1 being the viscous diffusion 
scale given by l2 = q/pa,. The second validity condition is thus given by: 

e ; / P  x ei p3g2/hq2 6 1. (3 .9)  

A quantity similar to l is involved in the propagation of gravity-capillarity waves 
on the surface of a viscous fluid (Leblond & Mainardi 1987). In  this problem, the 
spatial extent of the velocity field in the z-direction is determined by the wavelength 
A ,  and also by 1. This lengthscale has also been taken into account in recent studies 
of thc magnetic instability of a thin film of ferrofluids spread on the free surface of 
a heavier liquid (Valet & Wesfreid 1988; Lister & Kerr 1989). I n  the case of our 
experiment, ei/hz is of order while e:/l2 is about lop4. The lubrication model is 
thus perfectly valid in this case. We should mention another limitation of our 
approach contained in the nonlinearity of ( 3 . 4 ) :  at later stage of the instability, 
harmonics of small wavelength will be excited, and the condition (3 .8)  will not remain 
true for these wavelengths. However, our calculations will be limited to  the third 
order growth, that involves only the first harmonics, and this problem will not be 
relevant here. 
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FIGURE 12. The various patterns obtained by superposition ofNpairs of modes of equal amplitude. 
(a) ‘Roll’ system N = 1 ; (b) square pattern N = 2;  (c) hexagonal-peak pattern and hexagonal-hole 
pattern N = 3; (d) the Jo-peak pattern, the Jo-hole one ( J t ) ,  and more generally all the J ,  patterns, 
are obtained in the limit N = a, the wave vector being integrated over a circle. We have also 
suggested the angular dependence of the amplitude a(#) .  

3.2. Nonlinear growth of two-dimensional patterns 
The various patterns described in $2 can be viewed as superpositions of N pairs of 
modes (qi, -qJ with c- = [z and qi = qM, to which one should add harmonics in 
the nonlinear growth. Different possibilities are suggested on figure 12. The ‘roll’ 
system (R), the square pattern (S) and the hexagonal one, respectively correspond to 
N = 1,  2, and 3. Because of the translational invariance, the relative phase #$ of the 
different Fourier modes cqi = Qtexp ($0, can be selected without any restriction in 
the ‘rolls’ and ‘squares’ cases. In the case N = 3, the nature of the pattern obtained 
does depend on this choice (Buzano & Golubitzky 1983). Two extreme cases are 

q! 
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suggcsted on figure 12 (c) : when @ = + qh2 + q53 = 0 one obtains an hexagonal lattice 
ofpeaks (H), and when @ = x, one obtains an hexagonal lattice of holes H*). This last 
pattern is sometimes called the 'triangular pattern' (Boudouvis & Scriven 1989). It 
is to  be noted that the hexagonal and triangular patterns are images of each other 
through the amplitude reflection C+-E;,  and are thus not invariant in this 
transform. This is to be compared with the rolls and square patterns, which do not 
break this symmetry. 

The J, and J ,  patterns are obtained in the limit N = 00, the wave vector being 
integrated over a circle of radius qM (see figure 12 (d). More precisely, the properties 
of the Bessel function (see for instance Abramowitz & Stegun 1964) allow (3.7) to  be 
written in the form 

(3.10) 

In this expression, the J ,  pattern appears as the superposition of an infinity of 
Fourier modes, with wave vector defined by the angle 4 = (x, q )  and with amplitude 
a function of 4. The symmetry order of this function is the same as that of the 
pattern. In  particular, the amplitude distribution is isotropic in the J, case. Again 
the properties of these patterns with respect to amplitude reflection (c+-[) differ: 
for n =/= 0 the patterns are invariant, but J, is riot invariant and a J,-peak pattern 
(called J, on figure 12) is to be distinguished from a J,-hole one (J,*). 

In the linear approximation, and for a given wavenumber q,  all the patterns of 
figure 12 have the same growth rate. As is usual in hydrodynamic instabilities 
(Wesfreid & Zaleski 1984), the pattern selection observed in $2 is clearly a 
consequence of the non-linearities of (3.4). These nonlinearities can also be discussed 
in the Fourier plane by deriving amplitude equations of the Fourier components (see 
for instance Palm 1975, or Busse 1978). 

In  order to simplify this discussion, we first define non-dimensional variables : 

x' = qM x, y' = qM y, t' = vM t ,  = Cleo. 

In this notation after dropping the primes, the evolution equation becomes 

~+v. [ ( l+C)"(2c+v'C)]  at = 0. (3.11) 

We now expand C(r,t) as a Fourier series 

C(r, t )  = XAq(t)exp ( h e r ) ,  
9 

where the q vectors are non-dimensional. The real nature of 5 implies that A_,  = A:, 
and the mass conservation that A ,  = 0. We then develop the cubic term in (3.11) and 
use the independence of the functions exp ( iq - r ) .  This finally gives 
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FIGURE 13. Different mode interactions involved in the amplitude equation: (a) and (b) second 
order interaction between a main mode and its first harmonic ; third-order amplification of a main 
mode; (d )  and (e) second-order interaction between main modes in the hexagonal and Jo cases. 

The first term on the right-hand side corresponds to the linear growth analysed 
above, the largest growth rate cM = 1,  being obtained for q = qM = 1.  The other 
terms involve selection rules that  are suggested on figure 13. All these nonlinear 
terms can be understood as interactions between triplets, quadruplets and 
quintuplets of wave vectors. The main peculiarity of (3.12) is the occurrence of a 
second-order term. This is a very general property of hydrodynamic instabilities that  
break the symmetry 50-5 (Buzano & Golubitsky 1983), such as the BBnard- 
Marangoni one or that  of the ferrofluids under a normal field (Cowley & Rosensweig 
1967). In  our case, this lack of symmetry is obvious in (3.36): changing the sign of 
5 not only changes the sign of the fluid velocity but also its magnitude. For this kind 
of instability, the hexagonal pattern is very often dominant (at  least near threshold), 
and the appearance of this pattern in our experiment is thus not a surprise. 

Very often, the discussion of nonlinearities in hydrodynamic instabilities, including 
the pattern selection problem, is through amplitude equations for the main Fourier 
modes (p x qM = l), the dynamics of the harmonics being included in the third- 
order terms. This approach is in fact relevant only in the vicinity of a bifurcation, the 
distance to the threshold e being treated as a small parameter. This parameter defines 
in particular the width of the domain of the unstable wave vectors Aq/qM that  
should scale as 8. In  our case, there is no such ' control parameter ', and the variation 
of the growth rate in the linear regime depicted on figure 1 corresponds to a ratio 
A q / q M  of order unity. This situation is reminiscent of the Saffman-Taylor instability. 
However, the tendency to form an hexagonal pattern can be qualitatively deduced 
from our equations by defining a new small parameter that is simply the initial 
amplitude of the perturbations. 

If we call 8 the order of magnitude of the amplitudes of the main modes A,, in the 
linear regime, the first effect of the nonlinearities will be the generation of harmonics 
qr+qj ,  the amplitude of which will be of order c2 (figure 13a). In  turn, these 
harmonies will interact with the pairs (q,, -qi)  (figure 136), modifying the growth of 
the Aq, at order e3. This correction is to be added t o  that  introduced by the third- 
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order term of (3 .12) ,  which is also of order c3 (figure 13c).  Both corrections will be the 
smallest order ones for the roll and square patterns but not for the hexagonal one. 
In this case, the rclationship q1+q2+q3 = 0 is imposed to take into account the 
interactions suggested on figure 13 ( d ) ,  which introduce a correction of order eZ in the 
Aqi. This correction can be studied in the simplest casc of three pairs of modes of 
equal and real amplitudes: Aqi(t)  = A ( t ) ,  for i = 1, 2 ,  3.  At second order, the 
harmonics can be neglected and. for q = qM = 1, (3 .10)  reduces to 

d A / d t  = A f 3 A 2 .  (3.13) 
We thus obtain that :  

(i) the hexagonal pattern of peaks is amplified at  order e2(A > 0);  
(i i)  the hexagonal pattern of holes is damped a t  the same order ( A  < 0);  
(iii) the roll and square patterns are just modified a t  order s3, and thus follow linear 
growth at order c2. 

The results (i) and (ii) also hold for the J,-peak and the J,-hole patterns because 
their Fourier dccomposition can be viewed as the superposition of triplets of wave 
vectors of equal amplitude, the growth of which being governed by (3 .11) .  This 
remark is illustratcd on figures 13(d)  and 13(e) ,  where we see that the same 
geometrical construction gives the second-order coupling between modes, for the J, 
and hexagonal patterns. At this level of analysis, the hexagonal-peak and J,-peak 
pattern appear to be dominant a second order, in agreement with our experimental 
observations. These observations are related to an important symmetry property of 
the system studied : the non-invariance under amplitude reflection [+-C. 

Finally, we note that the results ( i )  and (ii) are consistent with those of Whitehead 
& Luther (1975) obtained in the limit of vanishing surface tension. Following their 
calculations, the nonlinearities amplify the growth of hexagonal cells with ascending 
flow at  their centre, and damp the other kind (descending flow). These cells are the 
equivalent of the hexagonal-peak and hexagonal-hole patterns discussed here. 

3.3. Third-order growth of rolls, squares and hexagons 

In  the case of the rolls, square and hexagonal patterns, we have improved the 
qualitative arguments developed above by exact calculation at order e3. The method 
is similar to  that used by Jacobs & Catton (1988a, b )  in the case of the inviscid 
Rayleigh-Taylor instability. We have considered the growth of an initial disturbance 
given by A,,(O) = e for i = 1 to N ,  where the ki are the main wave vectors suggested 
on figure 12, and A,(O) = 0 for the other wavc vectors. When E is a small, positive and 
real parameter, the cases N = 1 ,  2 and 3 correspond to the nonlinear growth of the 
‘rolls ’, squares and hexagonal-peak patterns (the hexagonal-hole pattern is obtained 
for N = 3 and 6 < 0).  We then performed a perturbation analysis by developing the 
amplitudes as power series in E. For the main modes ki,  we have Aki( t )  = A J t )  with 

A,  = EA,.,(t)+E2Ak,2(t)+E3A,.3(t)+ ... ; 
for the first harmonics p = ki+ k, =I k,, we write 

A, = E2A,,2(t)+E3Ap,3(t)+ ...; 

and for the second ones r = ki + ki + k, + k,, we would write 

A ,  = E3Ar,3(t)+... .  

By identifying the powers of E obtained in (3.12), one obtains a system of equations 
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FIGURE 14. Evolution of the amplitudes of the main modes for the roll (R), square (S), hexagonal- 
peak (H) and hexagonal-hole pattern (H*), calculated at third order for an initial non-dimensional 
amplitude A ,  = E = 0.01. At the precision of the figure, the squared growth cannot be distinguished 
from the linear one. 

in which the order n can be deduced from the orders n‘ < n. The simplest calculations 
are obtained in the ‘roll ’ case, where by symmetry A,, = A2k, = 0 : 

dA,, ,Idt 1 = O ,  ( 3 . 1 4 ~ )  

dA2k,2/dt+8A2k,2 = 6AE, l ,  (3.14b) 

dAk,3/dt-Ak,3 = -15Ak, iA2k,2+3Ai ,1*  ( 3 . 1 4 ~ )  

The solution of this system is easily obtained, giving 

ALR) = - ~ e t + ~ e - 7 t ] + . . . ,  Ait)  = 3 5 e  2 [e 2 t -  e -8t ]+ ..., (3.15) 

where the superscript (R) stands for ‘rolls ’. We have also carried the same calculation 
for the square and hexagonal cases. The only difference is that, in addition to the 
main modes k, of amplitude A,, and to the harmonics 2k, of amplitude A2,, a new 
group of harmonics p of the kind & k, f k, is to be taken into account, of amplitude 
A,,,. In  the square case, we obtain 

(3.16) 

In  figurc 14. we have plotted the variation of Ak(t)/Ak(0) for the four patterns: 
rolls, squares, hexagonal-peaks and hexagonal-holes. These calculations are in 
perfect agreement with the qualitative analysis developed above and with the 
experimental results. In  particular, we recover that the hexagonal-peak pattern is 
the dominant one because of the second-order nonlinearities. These nonlinearities 
tend to damp the hexagonal-hole pattern, which is thus practically impossible to 
observe. 
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For the four patterns, the third-order term involves a competition between a third- 
order amplification and the moderating effect of the harmonics. This appears for 
instance in (3.14c), which holds for the role case. In this case, the harmonics seem to 
dominate, which is reminiscent of the situation encountered for saturating instability 
near a supercritical bifurcation. The situation is different in the case of the hexagonal 
pattern: the third-order term is positive and increases again the growth of this 
pattern. In  the square case, the two effects practically compensate each other, the 
behaviour obtained being close to  the linear one. As a result, the growth rate of the 
square pattern is intermediate between the rolls and hcxagonal-peak ones. This 
remark is perhaps related to the persistency of the square pattern observed locally 
in the case of the two wires at 90". 

We finally note that the growth of the first harmonics introduces a modification of 
the shape of the interface a t  order c2, This contribution tends to amplify the peaks 
and to fill the valleys, increasing the asymmetry of the profile with respect to  the 
plane z = e,. This very general effect is observed in the case of a system that is not 
invariant under amplitude reflection, such as for instance a ferrofluid interface under 
a normal field. In our case, this asymmetry has its origin in the difference of the fluid 
mobility ( e ,  + between regions of positive and negative 6. 

3.4. Rolls-hexagon transition 
The comparison of the growth rates of the different patterns made in the previous 
section allows us to understand qualitatively the reason why some particular 
symmetries are selected. However, it is clear from figure 14 that the differences 
between the calculated growth laws are not very pronounced. In addition, and as 
mentioned above, the growth of the square and roll patterns as well as that of the 
hexagonal pattern, involves modifications of the int,erface at  order e2 associated with 
the amplitudes of the first harmonics APk(t)  and Ak+k(t) .  Strictly speaking, the 
hexagonal pattern is thus not the only one to be amplified at order e2. These 
considerations suggest that a more careful analysis is required to understand the 
results of the one-wire experiment discussed in $2.2.2. 

In  this section we show that the selection of the hexagonal pattern does not only 
result from its larger growth rate. In fact the hexagonal growth can inhibit that of 
another pattern. This is what happens in the one-wire experiment, that we model as 
follows. We again consider three pairs of modes such as those suggested on figure 
12(c), but with different initial amplitudes: Akl(0) = cl and Ak2(0) = Ak3(0) = e2, 
where el and c2 are small, real and positive values. When e2 < el, this distribution can 
be viewed as the superposition of a roll system of amplitude AR(0) = Akl(0)- 
Ak2(0) = e1-e2, and of an hexagonal perturbation of amplitude AH(0) = AkZ(0) = e2. 
In a calculation at second order, we can neglect the influence of the harmonics. In  
this case, the amplitude equations reduce to 

% = Akl+3A&4z3, % = Ak2+3A&A&, = Ak3+3A&&. (3.18) 
dt tit 

This system of equations generalizes (3.9) to the case of three modes of different 
amplitudes. Knowing the initial conditions, the three amplitudes can be treated as 
real numbers, and (3.18) can be rewritten in terms of amplitudes of the roll and 
hexagonal pattern components A, = Akl -Ak2 and A, = Ak2 = Ak3 : 

!f& = A,-3A,AH, 
dt 

dA 
dt 
-- - A,+3AL+3AHA,. (3.19) 
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el-1 
FIGURE 15. Evolution of the reduced amplitudes A/A(O) in the roll-hexagon transition, calculated 
at second order for A,,(O) = el = 0.05 and Ak2(0) = e2 = 0.005. L designates linear growth. The long- 
time behaviour is in fact unphysical, but the tendency toward the hexagonal situation (&/Ak2 +l),  
and the damping of the roll component (A,) is well recovered. 

A short-time perturbation expansion similar to that used in the previous section 
gives at order e2 

AR(t) = E, et-3eRsH[ezt-et], AH( t )  = ~ ~ e ~ + 3 e , ( e ~ + e ~ ) [ e ~ ~ - e ~ ] .  (3.20) 

On both systems of equations (3.19) and (3.20), we observe that in addition to the 
nonlinear terms discussed in the previous section, the second-order nonlinearities 
introduce a coupling between A ,  and A,. This effect tends to damp the growth of 
the rolls and to increase that of the hexagonal pattern. The hexagonal-peak pattern 
dominates the roll one not only because of its larger growth rate but also because of 
the nonlinear interaction between these two patterns a t  second order. 

We also mention that (3.18) can be solved exactly by selecting new variables ui 
defined as Aqi = u,(t) et ,  and by noting that u2 = ug and that u:-ui is constant. After 
some calculations we obtain 

(3.21) 

the quantities q5 and $m being defined as 

$ = 3(4-e$[et- 11, cosh ($m) = e1/e2.  

The evolution of A,, and Ak2 is suggested on figure 15. We find an unphysical 
divergence at a finite time t ,  given by $(t , )  = $,, because our calculation is in 
fact correct only at  second order. Of course, a t  long time, nonlinearities of higher 
order will modify the growth and presumably remove the singularity. Because of this 
peculiarity, this solution is not of great practical interest. However, it gives 
interesting results concerning the behaviour of the ratio Akl/Ak2,  and of that  of the 
roll amplitude A ,  = A,, -Ak2 : 

Akl/Ak2 = CoSh(q5,-$), A ,  = (e:-ei)det[cosh ($m-$)- l ] / ~ i n h ( $ ~ - $ ) .  
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As suggested on figure 15, when t approaches t , ,  the ratio Akl/Ak2 tends toward 
1 .  This means that the perturbed roll pattern evolves toward an hexagonal one, in 
agreement with the experimental observations. Simultaneously, the roll component 
of the pattern A, vanishes at  t , .  This result is very important and means that the 
growth of the hexagonal pattern would lead finally to the complete disappearance of 
the roll component, just as observed in the experiments. Of course, the correct 
description of this evolution would require taking into account higher-order 
nonlinearities, and thus higher order harmonics. 

A similar calculation can be developed in the case of the two wires a t  60°, but now 
with el 4 e2 Similar results are obtained in this case : the system evolves toward the 
hexagonal pattern, the two systems of rolls being progressively erased by the 
hexagonal growth. A more general situation can be studied using (3 .20) ,  that is the 
case of three different, complex, initial amplitudes Aki(0) = a,exp (i&) with a, > 0. 
In all cases the hexagonal-peak pattern is obtained when t approaches t,. In  
particular, the ratios aJaj tend towards 1 ,  and the sum of the phases @ = q51 + $2 + q53 
towards 0 (or 2nn). An exception is the case of the hexagonal-hole pattern, for which 
@ remains constant and equal to R .  It is, however, possible to show that this solution 
is unstable with respect to @ variations and finally relaxes toward the hexagonal- 
peak solution. 

All these results obtained here a t  second order are in fact well known, but in a 
slightly different context. In the case of a two-dimensional instability driven by a 
control parameter, and close to a bifurcation point, (3.18) is replaced by generalized 
Landau equations (Haken 1975) : 

(3 .22)  

where E is proportional to the distance to the threshold, and where the precise values of 
f, g and g’ depend on the nature of the nonlinearities. When f > 0, and in a wide range 
of the other parameters, the hexagonal-peak solution is an attractor point, and the 
hexagonal-hole pattern is an unstable fixed point. In  contrast to our second-order 
truncation, (3,22) leads to a finite amplitude A, a t  large times. Unfortunately, and 
as explained in the previous section this approach is correct only near the bifurcation 
point E = 0, where the dynamics of the harmonics can be neglected, their influence 
being reduced to contributions to  the third-order terms. In  our case this 
approximation is not justified, and the influence of the third- and fourth-order 
nonlinearities on the roll-hexagon transition remains to be studied. 

3.5. Simplified study of annular patterns 

We now briefly discuss the case of the annular patterns observed around the dust in 
92. Usually, the study of this kind of pattern requires expansion of the interface 
perturbations over the Bessel functions and deriving new amplitude equations 
(Normand 1984; Jacobs & Catton 1988a, b ) .  Unfortunately, the properties of the 
Bessel functions complicate the calculations, the selection rules disappearing from 
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the amplitude equations. In this section we propose a simplified approach based on 
the decomposition of the J ,  patterns over the Fourier modes presented in $3.2.  We 
thus consider the evolution of a continuous one-parameter distribution of modes : 

(3.23) 

with a($ + n, t )  = a*($, t ) .  Just as in the previous section we will restrict our study to 
the dominant wavenumber k = k, = 1,  and to the nonlinearities of second order. As 
we have seen on figure 13(e) ,  the second-order coupling between modes is basically 
the same as that given by (3 .20) .  The evolution equation of a($,t) is thus given by 

(3.24) 

The simplest solution of this equation is obtained for the J ,  patterns. In this case, 

a 
- a($, t )  = a($, t )  + 3a*($ +in, t )  a*($ - in, t ) .  
at 

the amplitude does not depend on $ and one obtains, at  short times, 

a($, t )  = a ( O ) e + 3 ~ ( 0 ) ~ ( e ~ ~ - e ~ ) ,  

which is identical to the second-order growth law of the hexagonal pattern (see 
(3 .17) ) .  We thus recover that, as announced in $3.2,  the J ,  and hexagonal patterns 
have the same growth law, the J,-peak and the hexagonal-peak ones being amplified 
at second order. 

If one starts now from a perturbed J, pattern, or from another J, pattern with 
n =k 0, the $-dependence is to be taken into account. We can, however, simplify the 
discussion by noting that, in (3 .24) ,  the evolution of a($,t) appears as the 
superposition of those of an infinity of hexagonal patterns, of different orientations, 
and without interactions. Each of these patterns is defined by six wave vectors: 
kk($), +k($+in) ,  &k($-in).  We can thus use the results suggested at  the end of 
the previous section : each sub-pattern should evolve toward the hexagonal-peak one. 
The patterns obtained asymptotically (as second order) must satisfy the following 
relationships : 

l4$)/4$+3)l = 1, 

Arg[a($)]+Arg[a($+$n)]+Arg[a($-in)] = 0 (modulo2n). 

It is easy to check that these conditions are satisfied for patterns of the kind 

[ ( r ,  t ,  = J O ( r )  + c a m ( t )  J6m,(r)  cos (6mo), (3 .25)  

with a, + Em+,( - l)mam > 0. This condition prevents sign changes in a($, t )  and thus 
allows the phase condition to be satisfied. The evolution of the at is in general very 
complicated, unless one starts at t = 0 from a pattern of this kind. In this case the 
aa(t) can be deduced from the amplitude evolution that reduces to 

a($, t )  = a($, 0) et + 3 4 9 ,  0)2(e2t - et). (3.26) 

It is then easy to check that this kind of pattern is also amplified at second order, 
with a slight evolution of its shape. We thus obtain that, in addition to the 
axisymmetric and hexagonal structures, another kind of favoured pattern can be 
obtained by superposition of J,,, J ,  and Jl2 solutions of the linear problem (and more 
generally J, ,  solutions). We believe that the structure reproduced in figure 6 is of 
this kind. This figure can be compared with figure 16 where we have reproduced two 

m + o  

13 FLM 236 
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(4 

FIQURE 16. Two examples of annular patterns with secondary maxima amplified by the  second- 
order nonlinearities. Both patterns are superposition of J,, J ,  and J, ,  ones with respective weights 
a,, a,  and a,. (a) a, = 0.75, a1 = 0.5. a2 = 0.25; ( b )  a. = a, = a, = 1. The respective angular 
dependance a($)  of the  amplitude is also reproduced. 

examples of patterns deduced from equation (3.25). The central maximum is that of 
the J ,  function, the six secondary peaks on the first ring correspond to J,(r) cos (68), 
and the twelve others on the second ring are associated with the J12(r) cos (128) 
component. Depending on the respective weight of the J ,  functions, the structure 
obtained can be very close to a localized hexagonal pattern. 

In  52.2.1, we have mentioned that these structures are very often intermediate 
steps of a transition between the axisymmetric and hexagonal symmetries, initiated 
by the perturbation of a J ,  structure by another pattern. A precise theoretical and 
experimental study of this transition remains to be made. We can, however, propose 
the following qualitative mechanism. Such a transition could be initiated by the 
interaction between a J ,  pattern and a Fourier component of another pattern. If we 
identify the Ox axis with the direction of this wave vector, the second-order 
nonlinearities will contaminate the directions # = -kin and kin, leading thus to a 
pattern of six-fold symmetry of the kind described above. At a later stage, this 
pattern could evolve towards an hexagonal extended pattern, but the description of 
this evolution is not possible using our simplified approach. 

It is important to  realize that the dynamics of the transition between the axial and 
hexagonal symmetry is presumably very different from that of the roll-hexagon 
transition. I n  the first case ( J ,  - H),  both symmetries are amplified at second order, 
while in the second one (R - H), only the hexagonal pattern is amplified. Qualitatively, 
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we expect a greater stability for the axial symmetry than for the ‘roll’ one. This 
prediction is in agreement with our experimental observations (compare figures 5 
and 7). 

Finally, we note that the solutions (3.25) are not invariant under amplitude 
reflection f;+-[, because of the their J,, component. These solutions share this 
property with the hexagonal pattern and of course with the J ,  one. Our system 
constitutes a very simple example of the influence of the symmetries on 
hydrodynamic instabilities (see for instance Busse 1978 ; Buzano & Golubitzky 
1983): positive and negative displacements of the interface are not equivalent, a 
property that leads to the appearance of asymmetrical patterns with respect to the 
unperturbed interface. In  addition, for this kind of instability, the relevant 
nonlinearities are of second order and favour the interactions of Fourier modes 
separated by 60” angles. This finally leads to patterns invariant under a rotation of 
60’. 

4. Conclusion 
In this paper, we have presented the first experimental study carried out in an 

extended geometry of the Rayleigh-Taylor instability of a thin viscous film spread 
on solid surface. We have observed that the nonlinear growth of this instability leads 
to the formation of two-dimensional patterns exhibiting different symmetries : 
‘rolls ’, hexagonal, axisymmetric, annular of sixfold symmetry. The preferred 
symmetries are the hexagonal and axial ones, but the other patterns can, however, 
be forced at small t before relaxing towards the hexagonal system. Starting from the 
lubrication hypothesis, we have derived the evolution equation of the interface. We 
have shown that the nonlinearities introduce a second-order term in the amplitude 
equations that results from the non-invariance of the system under amplitude 
reflection. By means of rather simple calculations, we have shown that these 
quadratic terms explain the dominant nature of the hexagonal and axial symmetries. 
We have also shown that an axisymmetric-hexagonal transition seems to be 
possible, the intermediate patterns (annular of sixfold symmetry) involving 
superpositions of ‘Bessel patterns’ : Jo(qr), J,(qr) cos (64 ,  J,,(qr) cos(128). . .. 

All these results deal with the behaviour at  short time. We have, however, given 
a qualitative analysis of the dripping that we have observed at  the latest stage of the 
instability. Our argument leads to a critical Bond number B, = ( eO/Ac) ,  x 0.04 above 
which the final drops should spontaneously fall, the pendant drops remaining stable 
below this threshold. In fact, we have observed that even for B < B, drops still fall 
after coalescence between two pendant drops. This secondary instability of the drops 
system obtained at  large times deserves further investigation. 

Another interesting aspect of our results is the observed evolution of the spatial 
extent of the patterns. This phenomenon is obvious on figures 5, 7, 8 and 9. The 
patterns are in fact nucleated in particular regions of the viscous pancake and 
progressively invade the system. All the calculations made in $3 apply to infinitely 
extended patterns and neglect this effect. A numerical study of this ‘propagation 
effect’ is in progress (see Mitescu, Limat & Wesfreid 1990). A first theoretical 
discussion can be found in Fermigier et al. (1991) together with a short version of the 
present article. More recent data on the propagation effect, and on dripping processes 
are also to be published (Limat et al. 1992). 

After the completion of this work, we became aware of a previous theoretical study 
of film instabilities (Hynes 1978) that included the case of the thin layer 

13-2 



382 M .  Fermigier, L .  Limat, J .  E .  Wesfreid, P .  Boudinet and C. Quilliet 

Rayleigh-Taylor instability. The results of this study agree with ours, except for the 
J ,  patterns, whose growth was numerically found to dominate that of the hexagonal 
patterns. This discrepancy remains to be discussed. We thank H. K. Moffatt for 
having provided us with a copy of this work. 

We have benefited from very helpful discussions with I. Mutabazi, J. C. Nataf and 
J. Prost. This work has received support from the DBT Program 1989 of the 
National Institute of Universe Sciences (INSU) of France. One of us (M.F.) 
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